SFT Inspired Cosmology

I. Aref'eva

Steklov Mathematical Institute, RAN, Moscow

String Field Theory 2011

September 20 – 24, Prague

Model

$$S = \int d^4x \sqrt{-g} \left\{ \frac{m_p^2}{2} R + \Phi F(\Box) \Phi - V(\Phi) \right\}$$

Superstring
inspired
$$F(\Box) = e^{\tau \Box} (-\Box - \mu^2), \qquad m_p^2 = \frac{1}{8 \pi G}$$

 τ is a parameter from SFT

$$V(\Phi) = \frac{\varepsilon}{4} \Phi^4$$

FRW:

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}$$

Main messages

• Eqs with infinite number of derivatives:

 On the half line in additional to the usual initial data a new arbitrary function (external source) occurs.

Stretch of the kinetic energy

i) Applications of nonlocal SFT eqs

to cosmological inflation.

ii) How to understand $F(\Box) = e^{\tau \Box}(-\Box - \mu^2),$

iii) Why half-axis ?

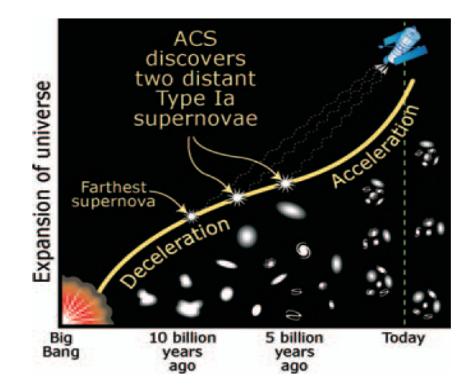
iv) Possible approximations

Brief History of Universe

• 14 Billions years:

From Big Bang to Life on Earth

Brief History of the Universe



First Big Bang.

Then inflation.

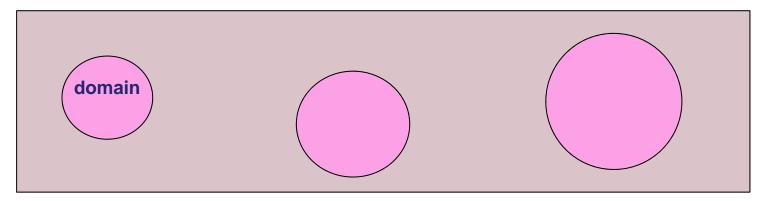
Inflation Scenario

- The cosmological observations show that the Universe is almost flat and a density perturbations are scale invariant, Gaussian and adiabatic.
- The simplest explanation of these observations is provided by the slow-roll infation driven by a scalar field (Guth, Starobinsky, Linde) inflanton.
- The basic ideas of the chaotic infation scenario are very natural and general.

Inflation

• It is assumed that the early universe initially consisted of many domains with chaotically distributed scalar field.

Where we are?



Anthropic Principle

 According to the anthropic principle there are many universes and our universe is just one of them better suitable to support life as we know it.

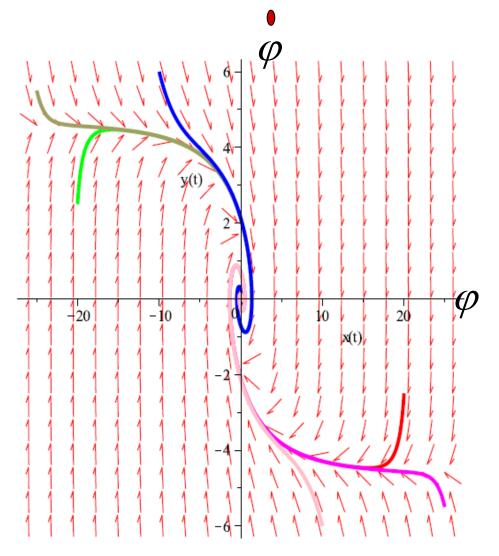
FRW cosmology with one (local) scalar field

$$S = \int d^4x \sqrt{-g} \left\{ \frac{m_p^2}{2} R + \Phi \Box \right. \left. \left. \Phi - V(\Phi) \right\} \right\}$$

FRW:
$$\Box = -\partial_t^{-2} - 3H\partial_t \qquad m_p^{-2} = \frac{1}{8\pi G}$$
$$\ddot{\phi} + 3H\dot{\phi} = -V'_{\phi}$$
$$H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right)$$
$$Simplest case \qquad V(\phi) = m^2 \phi^2/2$$

$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}}\left(\frac{1}{2}\dot{\phi}^2 + \frac{m^2}{2}\phi^2\right)\dot{\phi} = -m^2\phi$$

The inflaton flow in phase space (3 eras of the inflaton evolution)



Chaotic inflation:

- The inflaton reaches very fast the attractor
- The inflaton moves along the attractor
- Oscillations near the zero

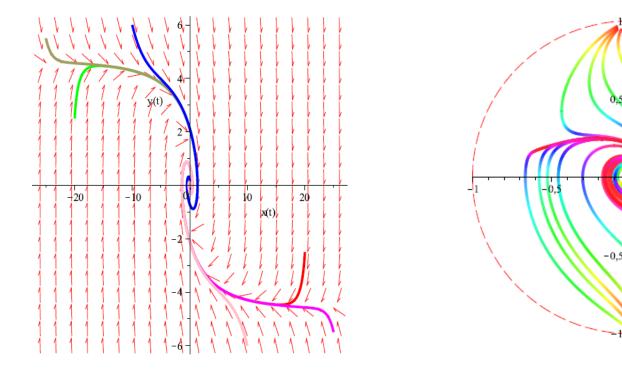
Problems with chaotic inflation:

• Large fields

• Non inflaton in the list of SM particles

Cosmological singularity

Cosmological singularity



$$\phi = const - \frac{1}{\sqrt{12\pi G}} \ln t$$
$$H \simeq \frac{1}{3t}, \qquad a \sim t^{1/3}$$

V. A. Belinski'i, L. P. Grishchuk, Ya. B. Zel'dovich, and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 89 (1985)346; BGZK(1985)

Inflation as dynamical system with 3 DOFs in the unit ball

BGKZ-change of variables

Dimensionless variables

 $X = \frac{\rho}{1-\rho}\sin\theta\cos\psi,$ $X = \frac{\sqrt{12\pi}}{3m_p}\phi$ $Y = \frac{\rho}{1-\rho}\sin\theta\sin\psi,$ $Y = \frac{\sqrt{12\pi}}{3\mu m_p} \dot{\phi}$ $Z = \frac{H}{\mu}$ $\tau = \mu t$ $Z = \frac{\rho}{1-\rho}\cos\theta$

Cosmological Singularity

 Classical versions of the Friedmann Big Bang cosmological models of the universe contain a singularity at the start of time.

Proposal: restrict ourself by considering the time variable t running over the half-line with regular boundary conditions at t = 0.

Cosmological Daemon

I. A., I.Volovich, JHEP 08 (2011)102, arXiv:1103.0273

- Nonlocal string field theory equations with infinite number of derivatives.
- We use the heat equation method and show that on the half-line in addition to the usual initial data a new arbitrary function (external source) occurs that is called the daemon function.
- The daemon function governs the evolution of the universe similar to <u>Maxwell`s demon</u>.
- In the simplest case the nonlocal scalar field reduces to the usual local scalar field coupled with an external source.

Nonlocal operator of SFT-type

$$F(\Box) = e^{\tau \Box} (-\Box + \mu^2), \quad \Box = \partial_{tt}^2 - \partial_{x_i x_i}^2$$

On space of homogeneous functions

$$F(\Box) = F(\partial_t^2) = e^{\tau \partial_t^2} (-\partial_t^2 + \mu^2),$$

 $e^{\tau \partial_t^2}$ as solution of the diffusion equation

$$\Psi(\tau,t) = e^{\tau \partial_t^2} \varphi(t) \longleftrightarrow \begin{bmatrix} (\partial_\tau - \partial_t^2) \Psi(t,\tau) = 0, \\ \Psi(t,\tau)|_{\tau=0} = \varphi(t). \end{bmatrix}$$

The Heat Equation on the Whole Line

$$(\partial_{\tau} - \partial_t^2)\Psi(t,\tau) = 0,$$

$$\Psi(t,\tau)|_{\tau=0} = \varphi(t). \qquad \Psi(t,\tau) \equiv e^{\tau\partial_t^2}\varphi(t) = \mathcal{K}[\varphi](t)$$

$$\varphi(t)$$

$$\mathcal{K}[\varphi](t) \equiv \frac{1}{\sqrt{4\pi\tau}} \int_{-\infty}^{\infty} \varphi(t') e^{-\frac{(t-t')^2}{4\tau}} dt'$$

The heat equation of the half-line

$$\begin{cases} \frac{\partial}{\partial \tau} \Psi_D(t,\tau) = \frac{\partial^2}{\partial t^2} \Psi_D(t,\tau), \quad t > 0, \quad \tau > 0, \\ \Psi_D(t,0) = \varphi(t), \\ \Psi_D(0,\tau) = \mu(\tau). & \Psi_D(t,\tau) \end{cases}$$

$$\begin{split} \Psi_D(t,\tau) = \frac{1}{\sqrt{4\pi\tau}} \int_0^\infty \varphi(t') \left[e^{-\frac{(t-t')^2}{4\tau}} - e^{-\frac{(t+t')^2}{4\tau}} \right] dt' \\ + \frac{t}{\sqrt{4\pi}} \int_0^\tau \frac{\mu(\tau')}{(\tau - \tau')^{3/2}} e^{-\frac{t^2}{4(\tau - \tau')}} d\tau' \Longrightarrow J(t) \end{cases}$$

Semantic remarks

J(x) – Daemon external source.

- According to Plato: daemons are good or benevolent "supernatural beings between mortals and gods"
- Judeo-Christian usage of demon: a malignant spirit.
- Socrates' daimon is analogous to the guardian angel.

Profit from the Daemon external source

$$S = \int d^4x \sqrt{-g} \left\{ \frac{M_P^2}{2} R + \frac{1}{2} \phi \Box \phi - U(\phi) + J\phi \right\},$$

$$J(\mathbf{x}) - \mathbf{Daemon external source}$$
$$\epsilon = \frac{M_P^2}{2} \left(\frac{U'(\phi) - J}{U(\phi) - J\phi} \right)^2$$

$$U(\phi) = m^2 \phi^2 / 2; \epsilon = \frac{M_P^2}{2\phi^2} \left(\frac{m^2 \phi - J}{\frac{m^2}{2}\phi - J}\right)^2 = \frac{M_P^2}{2\phi^2} \frac{\delta^2}{(\frac{m^2}{2}\phi - \delta)^2}$$

 $\delta = m^2 \phi - J$

Nonlocal FRW Equations

$$(\Box + \mu^2) e^{-\tau \Box} \Phi - \varepsilon \Phi^3 = 0 \qquad \Box = -\partial_t^2 - 3H\partial_t$$

$$F(\Box) \qquad 3H^2 = \frac{1}{m_p^2} T_{00}$$

$$F(\Box_g) = \sum_{n=0}^{\infty} f_n \Box_g^n$$
$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu\nu}} = \left(E_{\mu\nu} + E_{\nu\mu} - g_{\mu\nu} \left(g^{\rho\sigma} E_{\rho\sigma} + W \right) \right)$$

$$E_{\mu\nu} \equiv \frac{1}{2} \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} \partial_{\mu} \Box_g^l \phi \partial_{\nu} \Box_g^{n-1-l} \phi \qquad W \equiv \frac{1}{2} \sum_{n=2}^{\infty} f_n \sum_{l=1}^{n-1} \Box_g^l \phi \Box_g^{n-l} \phi - \frac{f_0}{2} \phi^2 + V(\phi)$$

Solutions to Nonlinear Nonlocal Equation on the Whole/Half-line

• Dirichlet's daemon without source

$$e^{\tau\partial^2}(\partial^2 - \mu^2)\phi(t) = -\epsilon\phi^3(t)$$

$$\phi(t) = a \sinh(\Omega t) - \frac{\epsilon a^3}{32\mu^2} e^{-9\lambda\Omega^2} \sinh(3\Omega t) + \dots$$

where $\Omega^2 - \mu^2 - \frac{3}{4}\epsilon a^2 e^{-\tau\Omega^2} = 0$

$$E = \frac{a_1^2}{2}\Omega^2 e^{\lambda\Omega^2} + \varepsilon \frac{3a_1^4}{8} \left(\lambda\Omega^2 - \frac{1}{4}\right)$$

Next 3 transparencies an explanation of the origin of these formula

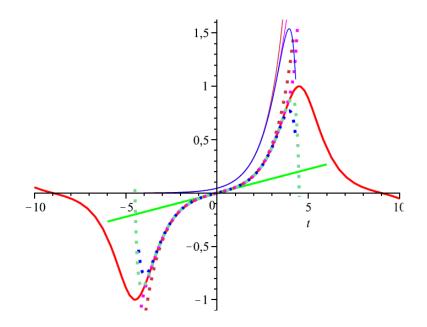
Nonlinear tachyon

$$\ddot{q} - \mu^2 q = -\epsilon q^3, \quad \epsilon > 0,$$

I.D.: $q(0) = q_0, \quad \dot{q}(0) = v_0$

$$E = \frac{1}{2}v_0^2 - \frac{1}{2}\mu^2 q_0^2 + \frac{1}{4}\epsilon q_0^4$$

E > 0 — motion in two holes



$$\begin{split} q(t) &= a \operatorname{cn}(\Omega t + b, k) \\ a^2 &= \frac{\mu^2}{\epsilon} \left(1 + \sqrt{1 + \frac{4\epsilon E}{\mu^4}} \right) \\ \Omega^2 &= \mu^2 \sqrt{1 + \frac{4\epsilon E}{\mu^4}} \\ k^2 &= \frac{1}{2} + \frac{1}{2} \frac{1}{\sqrt{1 + \frac{4\epsilon E}{\mu^4}}} \\ b &: \quad \text{from } q_0 = a \operatorname{cn}(b, k) \end{split}$$

Nonlinear tachyon

$$q(u) = \operatorname{cn}(u - \mathbf{K}, k) \tag{30}$$

Asymptotic expansion for $|u| < \mathbf{K}$ and small k'

$$\operatorname{cn}(u - \mathbf{K}, k) = \frac{\operatorname{sn}(u, k)}{\operatorname{dn}(u, k)} k' = \frac{\pi}{k\mathbf{K}'} \left\{ \frac{\sinh u'}{\cosh \rho'} - \frac{\sinh 3u'}{\cosh 3\rho'} + \frac{\sinh 5\rho'}{\cosh 5u'} + \dots \right\}$$
(31)

where

$$\rho' = \frac{\pi \mathbf{K}}{2\mathbf{K}'}, \quad u' = \frac{\pi u}{2\mathbf{K}'} \tag{32}$$

$$\frac{1}{\cosh \rho'} = \frac{2}{e^{\rho'} + e^{-\rho'}} = \frac{2}{\frac{1}{q'^{1/2}} + q'^{1/2}} = \frac{2\sqrt{q'}}{1 + q'}, \quad q' = e^{-\frac{\pi K}{K'}}, \quad (33)$$

These series converge for $|\Re u| < K$ and -1 < k < 1. Expansion of $1/\cosh \rho'$ for small k' is

$$\frac{1}{\cosh \rho'} = \frac{1}{2}k' + \frac{3}{32}k'^3 + \mathcal{O}(k'^5)$$
(34)

I.A., E. Piskowsky, I. Volovich

Stretch of the kinetic energy

• Stretch of the kinetic energy

$$e^{\tau(\partial^2 + 3H\partial)}(\partial^2 + 3H\partial - \mu^2)\phi(t) = -\epsilon\phi^3(t)$$

Generalization of Lidsey, Int.J.Mod.Phys,2008 Barnaby, Cline, 0802.3218

Approximation

$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}}\left(e^{\tau\Omega^2}\left(\frac{1}{2}\dot{\phi}^2 - \frac{\mu^2}{2}\phi^2\right) + \frac{\epsilon}{4}\phi^4 + \Lambda\right)}\,\dot{\phi} = \mu^2\phi - \epsilon\phi^3$$

Consequences of the Stretch of the Kinetic Energy

Appearance of forbidden region

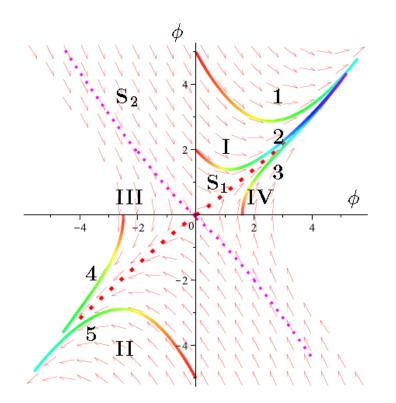
$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}} \left(e^{\tau\Omega^2} \left(\frac{1}{2} \dot{\phi}^2 - \frac{\mu^2}{2} \phi^2 \right) + \frac{\epsilon}{4} \phi^4 + \Lambda \right) \dot{\phi} = \mu^2 \phi - \epsilon \phi^3$$

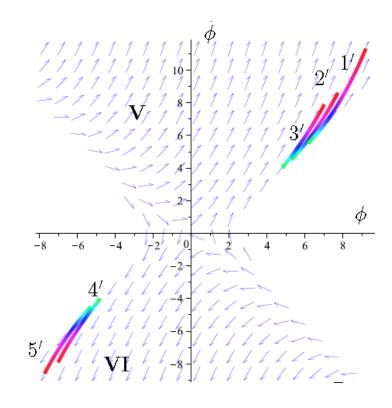
Assume Higgs potential

$$-\frac{\mu^2}{2}\phi^2 + \frac{\epsilon}{4}\phi^4 + \Lambda = \frac{\epsilon}{4}(\phi^2 - \phi_0^2)^2$$
$$\mu^2 = \epsilon\phi_0^2, \quad \Lambda = \frac{\epsilon\phi_0^4}{4}$$
$$\left(-\frac{\mu^2}{2}e^{\tau\Omega^2}\phi^2 + \frac{\epsilon}{4}\phi^4 + \Lambda\right) = \frac{\epsilon}{4}(\phi^2 - \phi_0^2)^2 - \frac{\mu^2}{2}\left(e^{\tau\Omega^2} - 1\right)$$

Inflation with Tachyon?

$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}(\frac{1}{2}\dot{\phi}^2 - \frac{\mu^2}{2}\phi^2 + \Lambda)}\,\dot{\phi} = \mu^2\phi$$



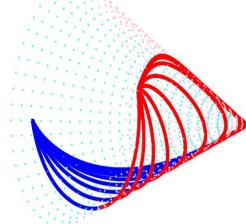


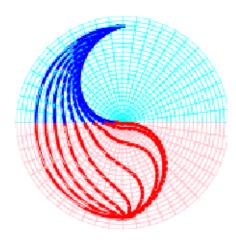
Inflation with Tachyon?

$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}(\frac{1}{2}\dot{\phi}^2 - \frac{\mu^2}{2}\phi^2 + \Lambda)}\,\dot{\phi} = \mu^2\phi$$

 $\Lambda = 0$

Dynamical system with 3 DOFs in the unit ball





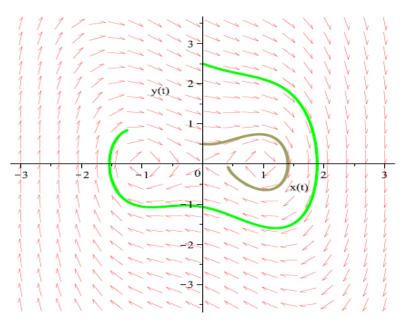
$$\phi = const - \frac{1}{\sqrt{12\pi G}} \ln t, \quad H \approx \frac{1}{3t}, \qquad a \sim t^{1/3}$$
$$\phi = const + \frac{1}{\sqrt{12\pi G}} \ln t, \quad H \approx -\frac{1}{3t}, \qquad a \sim -t^{1/3}$$

Inflation with Higgs potential

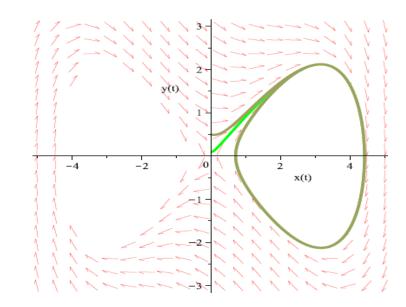
$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}}(\frac{1}{2}\dot{\phi}^2 + \frac{\epsilon}{4}\phi^4 - \frac{\mu^2}{2}\phi^2 + \Lambda)\dot{\phi} = \mu^2\phi - \epsilon\phi^3$$

2 different situations. The potential energy is:

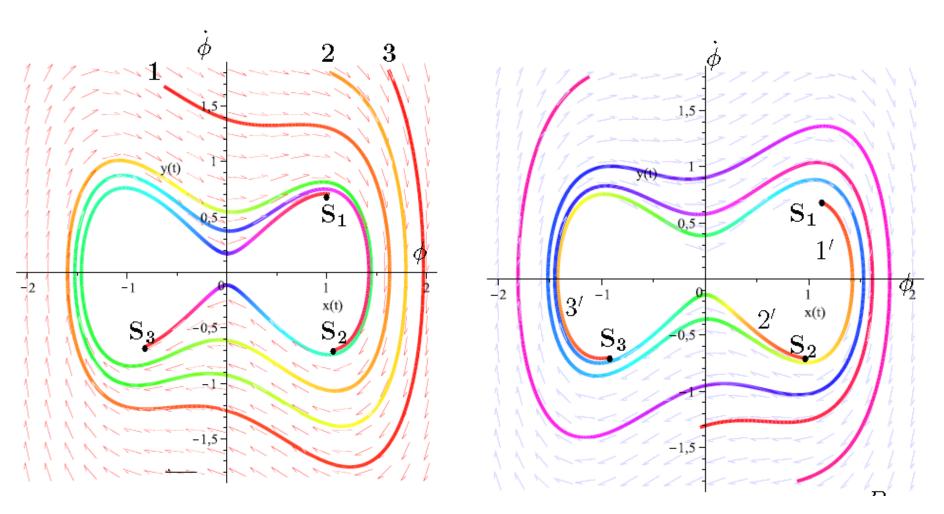
positive defined



not positive defined



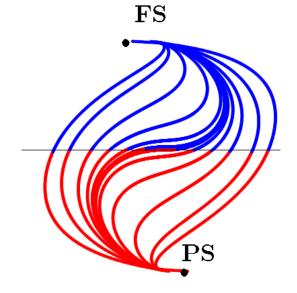
Higgs with a negative cosmological constant

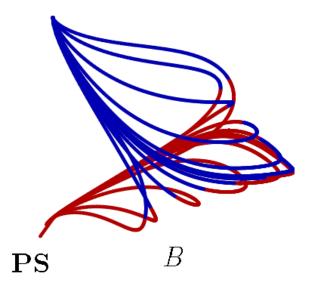


Higgs with a negative cosmological constant

$$\ddot{\phi} + 3\sqrt{\frac{8\pi G}{3}(\frac{1}{2}\dot{\phi}^2 + \frac{\epsilon}{4}\phi^4 - \frac{\mu^2}{2}\phi^2 + \Lambda)}\,\dot{\phi} = \mu^2\phi - \epsilon\phi^3$$

 \mathbf{FS}





Nonlocal (SFT-inspired) inflation

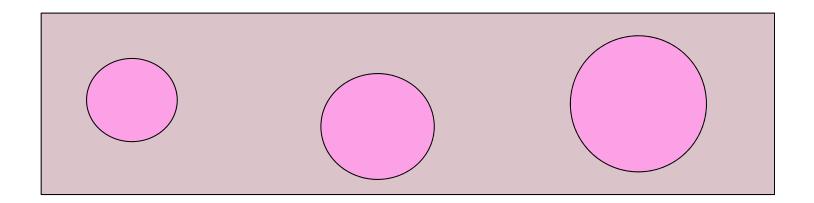
An extra current

 Effective negative cosmological constant

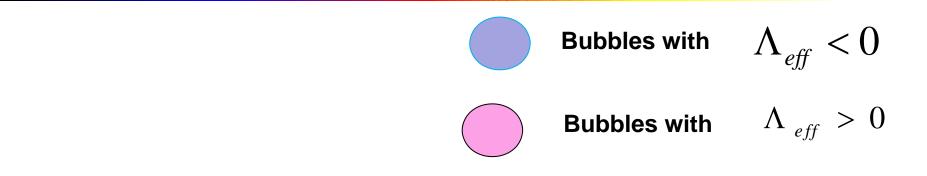
Anthropic Principle

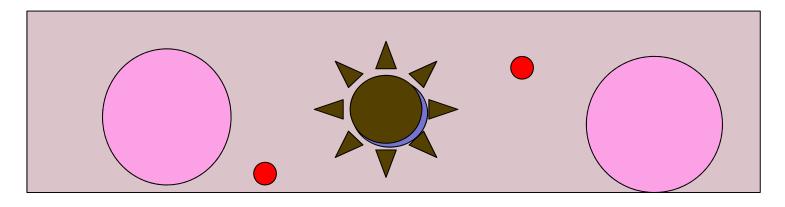
The anthropic principle: there are many universes ۲

Bubbles with $\Lambda_{eff} > 0$



Effective negative cosmological constant





Predators

Gravitational collapse

Few Refs on SFT Inspired Nonlocal Models in Cosmology

 Later cosmology w<-1

 I.A., astro-ph/0410443

 I.A., L.Joukovkaya, JHEP,05109 (2005) 087
 I.A., A.Koshelev, JHEP, 07022 (2007) 041
 L.Joukovskaya, PR D76 (2007) 105007; JHEP (2009)
 G. Calcagni, M.Montobbio,G.Nardelli, 0705.3043; 0712.2237; Calcagni, Nardelli, 0904.424

- Inflation
 steen noten
 - steep potential, non-gaussianity

 N. Barnaby, T. Biswas, J.M. Cline, hep-th/0612230, J.Lidsey, hep-th/0703007; Nunes, Mulryne, 0810.5471; I. A., I.Volovich, arXiv: 1103.0273,

Bouncing solutions

I.A., L.Joukovskaya, S.Vernov, JHEP 0707 (2007) 087