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Talk by: Ted Erler

At this time, the known analytic solutions of open string field theory include solutions

for the tachyon vacuum[1, 2, 3], solutions for marginal deformations [4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14], and complex solutions in cubic superstring field theory[15]. The current

selection is limited, and obviously we’d like to have more solutions. Recently, using

singular gauge transformations[16], we have almost found solutions for lumps[18] and

multiple branes[17], but these solutions suffer from serious singularities which appear to

be difficult to consistently fix. In this talk, I’d like to present a formalism which attempts

to explain where these singularities come from, and how they should be resolved. It can

be thought of as a variant of the formalism for singular gauge transformations introduced

by Ellwood[16]. Right now the idea seems uncomfortably formal to me, but still it has

some explanatory power, and I think that, at some level, it must be essentially correct.

1 Integrability Condition

Suppose Φ and Ψ are two solutions. A solution U to the equation

(Q + Ψ)U = UΦ (1.1)

will be called a left gauge transformation from Ψ to Φ, while a solution U to the equation

−QU + UΨ = ΦU (1.2)

will be called a right gauge transformation from Ψ to Φ. Note that a left gauge transfor-

mation from Ψ to Φ is the same as a right gauge transformation for Φ to Ψ. A left or

right gauge transformation with an inverse is a gauge transformation in the traditional

sense. Obviously, if Ψ and Φ are related by a gauge transformation, they are physically

equivalent.

However, Ψ and Φ can be related by left and right gauge transformations even when

they are not gauge equivalent. A trivial example is U = 0, but there are other ways to

do it. For example, given a tachyon vacuum solution Ψtv with homotopy operator A,
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we can construct a left gauge transformation from Ψ to Φ as a product of a left gauge

transformation of Ψ to the tachyon vacuum,

U1 = 1 + (Ψ − Ψtv)A (1.3)

and a left gauge transformation from the tachyon vacuum to Φ,

U2 = 1 + A(Φ − Ψtv). (1.4)

You can easily check

(Q + Ψ)(U1U2) = (U1U2)Φ. (1.5)

The construction of left or right gauge transformations is not unique. Given a left gauge

transformation U from Ψ to Φ, the string field λU is also a left gauge transformation from

Ψ to Φ assuming

QΨλ = 0 (1.6)

Likewise if U is a right gauge transformation Uλ is also a right gauge transformation.

Note that λ does not need to be invertible.

The basic question I want to ask is this: given a solution Ψ, under what conditions

can a string field U be regarded as a left gauge transformation to another solution Φ? (I

will focus on left gauge transformations; the discussion for right gauge transformations is

analogous). To answer this question, I am going to imagine the string field as an operator

acting (from the left) on the space of half-string functionals, D. Or, alternatively, as an

operator acting (from the right) on the dual space of half-string functionals, D∗. Since we

know very little about these linear spaces, my considerations will be formal. I will try to

illustrate how the formalism works in examples. Back to our question: U can be regarded

as a left gauge transformation if and only if (Q + Ψ)U is equal to U times something, in

other words

ImD[(Q + Ψ)U ] ⊆ ImD U (1.7)

I will call this the strong integrability condition.

The reason we care about this is because given a solution Ψ and a U satisfying the

strong integrability condition, we can construct a new solution by formally writing

Φ = U−1(Q + Ψ)U (1.8)

This equation is only really interesting if U is not invertible, so that Φ is a physically

different solution from Ψ. But in this case we have to explain what (1.8) means. Even
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when U is not invertible, we can define the operator

U−1 : ImD U → D/ kerD U (1.9)

Then (1.8) determines a new solution Φ up to a string field in the kernel of U . Often

this string field can be fixed by considerations of continuity, which often amounts to the

requirement that the solution is not too “sliver-like.” For example, this is essentially what

determines the phantom term in Schnabl’s solution, as the sliver state is needed to cancel

a sliver-like contribution from the sum over derivatives of wedge states.

So the main obstruction to using U to construct a new solution is the strong integra-

bility condition. Unfortunately, it is not always obvious when (Q + Ψ)U is proportional

to U . So I would like to propose a more concrete way to check this. Let’s write

U = 1 − X (1.10)

and suppose that the limit

lim
N→∞

XN = X∞ (1.11)

converges, in some (unspecified) sense, to a well defined projector. Now note the following

facts:

Fact 1. A half-string state is annihilated by U if and only if it is proportional to X∞. In

other words,

kerD U = ImD X∞, kerD∗ U = ImD∗ X∞. (1.12)

Proof. First show that ImD X∞ ⊆ kerD U . If |v〉 ∈ ImD X∞, then |v〉 = X∞|w〉 for some

|w〉. Then U |v〉 = (1 − X)X∞|w〉 = (X∞ − X∞)|w〉 = 0, so |v〉 ∈ kerD U . Next show

kerD U ⊆ ImD X∞. If |v〉 ∈ kerD U , then |v〉 = X|v〉. Applying this iteratively implies

|v〉 = XN |v〉 and in particular |v〉 = X∞|v〉 ∈ ImD X∞. The result follows. A similar

argument applies from the right acting on D∗.

Fact 2. If a half string state is proportional to U , it is also annihilated by X∞.

ImD U ⊆ kerD X∞, ImD∗ U ⊆ kerD∗ X∞. (1.13)

Proof. If |v〉 ∈ ImD U , then |v〉 = (1 − X)|w〉 for some |w〉. Then X∞|v〉 = (X∞ −
X∞)|w〉 = 0 and |v〉 ∈ kerD X∞. A similar argument applies on D∗.
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The proof of these statements is formal. In the following I will take them to be “ax-

iomatic.”

Fact 2 and (1.7) imply what I call the weak integrability condition:

ImD[(Q + Ψ)U ] ⊆ kerD X∞ (1.14)

or, equivalently

X∞(Q + Ψ)U = 0 (1.15)

Note that it is much easier to check when a state is killed by X∞ than it is to check

whether it is proportional to U . However, since the kernel of X∞ is in general larger

than the image of U , the weak integrability condition is a necessary, but not sufficient,

condition for U to be a left gauge transformation. This is a peculiarity of the fact that

we are working in infinite dimensions; if the space of half-string functionals were finite

dimensional, the weak integrability condition would be both necessary and sufficient.

The strong (and weak) integrability conditions imply a constraint on the projector

X∞ which has an interesting interpretation. To derive it, subtract Q(X∞U) = 0 from

(1.15):

(QX∞ − X∞Ψ)U = 0 (1.16)

Thus QX∞ − X∞Ψ is in the right kernel of U . By fact 1 this is the right image of X∞,

so we deduce

QX∞ + ΠX∞ − X∞Ψ = 0 (1.17)

where Π is some ghost number 1 string field. To learn something about Π, multiply this

equation by U from the left:

UQX∞ + UΠX∞ = 0 (1.18)

Again using Q(UX∞) = 0 this becomes

(QU)X∞ = UΠX∞ (1.19)

Now since we assume that U satisfies the strong integrability condition, we know that

QU = UΦ − ΨU for some solution Φ. Thus

UΦX∞ = UΠX∞ (1.20)

Thus Π and Φ must be identical up to terms in the left kernel of U and the right kernel

of X∞

Π = Φ + X∞M + Π′U (1.21)
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Plugging in, we find:

QX∞ + ΦX∞ + X∞MX∞ − X∞Ψ = 0 (1.22)

I will refer to this as the BRST invariance of X∞. Multiplying this by U from the right,

we recover the weak integrability condition.

To motivate my interpretation of this equation, consider a wedge state with boundary

conditions deformed by a (nonsingular) marginal current V [13]:

e−(K+V ) = σ01Ω σ10 (1.23)

where σ01 is a boundary condition changing operator which shifts from the reference

boundary conformal field theory, BCFT0, to the marginally deformed boundary conformal

field theory, BCFT1, and σ10 shifts back. Taking the BRST variation of this equation

gives

−cV e−(K+V ) + e−(K+V )cV = (Qσ01)Ω σ10 + σ01Ω(Qσ10) (1.24)

Thus we can informally identify,

cV ∼ Qσ10 (1.25)

Now note that cV is a solution to the string field theory equations of motion. This

suggests a general interpretation: A solution in open string field theory corresponds, from

the worldsheet perspective, to the BRST variation of a boundary condition changing

operator.

Then an interpretation of (1.22) immediately presents itself: X∞ is a projector-like

state representing a boundary condition changing operator which shifts from the boundary

conformal field theory described by Φ to the boundary conformal field theory described

by Ψ. Specifically, X∞ should be considered analogous to the state

X∞ ∼ σ0ΦΩ σΦΨΩ σΨ0 (1.26)

The boundary condition changing operator σΦΨ in the middle represents the shift from

the background of Φ to the background of Ψ; the operators σ0Φ and σΨ0 at the edges are

there only because σΨΦ must be expressed relative to the reference boundary conformal

field theory. Now take the BRST variation of this state and compare to (1.22): Φ can be

interpreted as the BRST variation of σ0Φ, M can be interpreted as the BRST variation

of σΦΨ, and Ψ is the BRST variation of σΨ0. With this understanding, we can summarize

our results as follows:
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Summary. Given a solution Ψ describing some boundary conformal field theory BCFTΨ,

a string field U is a left gauge transformation only if its associated projector X∞ cor-

responds to a boundary condition changing operator shifting between BCFTΨ and some

other boundary conformal field theory, BCFTΦ, in the sense of (1.22).

This is meant only to be a suggestive interpretation, but in some examples the structure

of boundary condition changing operators inside X∞ can be made explicit.

Let me return to the question of how we construct a solution. Given a left gauge

transformation U , we can define an inverse operator U−1 which maps the image of U

to the space of half-string functionals D modulo the kernel of U , as described in (1.9).

Suppose we fix the ambiguity in the kernel of U in some convenient way, defining an

operator,

(U−1)′ : ImD U → D (1.27)

Then we can write the formal equation (1.8) in a more explicit form:

Φ = (U−1)′(Q + Ψ)U + X∞Φ′ (1.28)

The ghost number 1 string field X∞Φ′ reflects the left over ambiguity in the kernel of

U . It must be chosen to ensure that the solution is regular and satisfies the equations of

motion. In fact, I claim that X∞Φ′ is precisely what we mean by the phantom term in a

general setting.

2 Examples

2.1 Trivial case: U = 0

The string field U = 0 is a left gauge transformation between any two solutions. The

associated projector X∞ is the identity string field:

X∞ = 1 (2.1)

We can interpret this as the projector we get when all of the boundary condition changing

operators inside X∞ have collapsed on top of one another and canceled out. Both the

strong and weak integrability conditions are satisfied. Using (1.28) we can therefore

express Φ as a formal gauge transformation of Ψ:

Φ = (0−1)′(Q + Ψ)0 + Φ′ (2.2)
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Since the kernel of U = 0 is the whole space, we can define the operator (0−1)′ however

we want; in the end it doesn’t matter, since in (2.2) it ends up multiplied by zero. Then

Φ = Φ′, and the entire solution consists of the phantom term. Apparently, U = 0 does

not give us any information about how to construct Φ from Ψ, but with such a trivial

equation (Q + Ψ)0 = 0Φ this is expected.

2.2 Schnabl’s solution

As discovered by Okawa[19], Schnabl’s solution for the tachyon vacuum can be constructed

by a left gauge transformation of the perturbative vacuum Ψ = 0:

U = 1 −
√

ΩcB
√

Ω (2.3)

The associated projector is,

X∞ =
√

ΩcBΩ∞ (2.4)

At this point we run into a problem, since B annihilates the sliver in the Fock space. But

if we assume X∞ = 0, our formalism implies that U is invertible and Schnabl’s solution

should be pure gauge, which is clearly incorrect for the purposes of string field theory.

Therefore, we I will assume

BΩ∞ �= 0 (2.5)

On the other hand, if the limit of XN for N → ∞ exists, we must have X∞U = 0:

X∞U =
√

ΩcBΩ∞(1 − Ω) = 0 (2.6)

Since B doesn’t kill the sliver, this implies that 1− Ω kills the sliver, which is equivalent

to assuming

KΩ∞ = 0 (2.7)

This might appear odd, since in the Fock space both (2.5) and (2.7) vanish in the same

way. However, there are reasons why B is different from K in this respect. Note that

in the ghost number 0 sector B is always accompanied by a c, whose negative conformal

dimension can lead to nonvanishing correlators even when B hits the sliver. Consider for

example the identity

Ω∞(Bc + cB)Ω∞ = Ω∞ (2.8)

and note on the left hand side B is always multiplying the sliver. A similar mechanism

explains why the phantom term in Schnabl’s solution is nontrivial, even though it vanishes

7



in the Fock space. By contrast, any finite correlator involving the sliver state will vanish

with an extra insertion of K, since the K insertion will compute the derivative of the

constant function. If we are allowed to consider correlators where the sliver state diverges

(for example Tr[c∂cΩ∞cΩ∞]), the projector X∞ most likely does not make sense, which

undermines the basic assumption of the formalism. With this motivation, I will simply

take (2.5) and (2.7) as formal assumptions. I would still like to give these equations a

more concrete and rigorous basis.

According to our interpretation, X∞ =
√

ΩcBΩ∞ should represent a boundary con-

dition changing operator between the tachyon vacuum and the perturbative vacuum. On

the worldsheet, naively such an operator would be zero. In fact, this might partially

explain why X∞ vanishes in the Fock space; for other solutions, X∞ will not vanish.

Okawa’s gauge transformation should satisfy the weak integrability condition, and,

consistently, it does, as is easy to check:

X∞QU =
√

ΩcBΩ∞(cKBc
√

Ω)

=
√

ΩcB(KΩ∞)c
√

Ω

= 0 (2.9)

from (2.7). Anticipating the form of Schnabl’s solution, Φ =
√

Ωc KB
1−Ω

c
√

Ω, and anticipat-

ing M = 0, we can also check BRST invariance of X∞:

QX∞ + ΦX∞ = −
√

ΩcKBcΩ∞ +
√

Ωc
KB

1 − Ω
cΩcBΩ∞

= −
√

ΩcKBcΩ∞ +
√

Ωc
KB

1 − Ω
cΩΩ∞ −

√
Ωc

KB

1 − Ω
ΩcΩ∞

= −
√

ΩcKBcΩ∞ +
√

Ωc
KB

1 − Ω
(1 − Ω)cΩ∞

= −
√

ΩcKBcΩ∞ +
√

ΩcKBcΩ∞

= 0 (2.10)

In passing, its worth noting that the phantom term for Schnabl’s solution

√
ΩcBΩ∞c

√
Ω (2.11)

is of the form X∞Φ′, where Φ′ is a ghost number one string field (in this case, c
√

Ω). This

is consistent with (1.28).
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We can turn this discussion around and express the perturbative vacuum as a left

gauge transformation of Schnabl’s solution:

U ‡ = 1 −
√

ΩBc
√

Ω (2.12)

The associated projector is,

(X‡)∞ = Ω∞Bc
√

Ω (2.13)

Let’s check the weak integrability condition:

(X‡)∞(Q + Φ)U ‡ = −Ω∞BcΩcKBc
√

Ω + Ω∞BcΩc
KB

1 − Ω
c(1 − ΩBc)

√
Ω

= −Ω∞BcΩcKBc
√

Ω + Ω∞BcΩc
KB

1 − Ω
(1 − Ω)c

√
Ω

= −Ω∞BcΩcKBc
√

Ω + Ω∞BcΩcKBc
√

Ω

= 0 (2.14)

consistently.

By composing U and U ‡, we can transform from the perturbative vacuum to the

tachyon vacuum and back. The corresponding left gauge transformation is

UU ‡ = 1 −
√

ΩcB
√

Ω −
√

ΩBc
√

Ω = 1 − Ω (2.15)

This state is BRST closed, and if it were invertible, it would be a gauge transformation

leaving the perturbative vacuum invariant. However, this state is not invertible, and the

associated projector is

(X + X‡)∞ = Ω∞ (2.16)

This is a sliver-like representation of the unit operator, which is the “boundary condition

changing operator” relating the perturbative vacuum to itself. Note that, unlike (2.4), this

projector does not vanish in the Fock space. Also note that the trivial shift in boundary

condition is easiest to see by using a left gauge transformation which passes through the

tachyon vacuum. A simpler gauge transformation U = 1 leads to X∞ = 0, which does

not lend itself to any particular interpretation in terms of boundary condition changing

operators.

2.3 Multibranes and Ghost Branes

Now let us consider multibrane and ghost brane solutions[17], which are known to suffer

from singularities related to their definition as a formal gauge transformation of the pertur-
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bative vacuum. The two-brane solution can be derived by applying the left gauge transfor-

mation U ‡ in (2.12)—which takes the tachyon vacuum to the perturbative vacuum—once

again to the perturbative vacuum. The projector (X‡)∞ = Ω∞Bc
√

Ω is the same as

before, but since we are starting from the perturbative vacuum the weak integrability

condition is different:

(X‡)∞QU ‡ = −Ω∞BcΩcKBc
√

Ω

= −Ω∞c(1 − Ω)KBc (2.17)

This state is not zero (from the perspective of our formalism), and so we expect the

2-brane solution to be singular. Indeed it appears to be. This does not mean that the

2-brane solution, as currently defined, cannot be fixed with some prescription; but I think

this prescription would ultimately go beyond the current singular pure gauge ansatz.

Ghost brane solutions are defined by applying the left gauge transformation U in (2.3)

more than once to the perturbative vacuum. For example, the −2 brane solution is defined

by

U2 = 1 −
√

ΩcB(2 − Ω)
√

Ω (2.18)

The associated projector is

(2X − X2)∞ =
√

ΩcB
[

lim
N→∞

ΩN−1(2 − Ω)N
]√

Ω (2.19)

One can check that the limit in the brackets approaches the sliver state. However, it

is interesting to note that with respect to the (conjectural) C∗ norm on the algebra of

wedge states, this does not approach the “same” sliver state as ΩN for large N . A similar

phenomenon was observed in the study of the phantom term in half-brane solutions in

cubic superstring field theory[15]. At any rate, the current formalism does not appear to

be refined enough to appreciate this distinction, and we have simply

(2X − X2)∞ =
√

ΩcBΩ∞ (2.20)

This is the same projector as (2.4), and by an identical calculation, the weak integrability

condition condition is satisfied:

(2X − X2)∞QU2 = 0 (2.21)

This is an example of a left gauge transformation which satisfies the weak integrability

condition but which, nevertheless, defines a singular solution. The problem is that the
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weak integrability condition does not imply the strong integrability condition. The basic

point can be appreciated as follows: Consider the vector space of bounded functions on

the positive real line K ≥ 0. On this vector space, consider the operator of multiplication

by the function U(K), where 0 ≤ U(K) ≤ 1 and U(K) vanishes quadratically at K = 0.

Defining U(K) = 1 − X(K), the operator

X(K)∞ =


1 for K = 0

0 otherwise
(2.22)

is the projector onto the kernel of U(K), as described in fact 1. However, the kernel of

X(K) consists of all functions which vanish at K = 0, whereas the image of U(K) only

consists of functions which vanish quadratically. So for example, the equation

Ke−K = U(K)f(K) (2.23)

has no solution for a bounded function f(K), even though both sides of this equation are

annihilated by X(K). This is essentially what’s going on for the ghost brane solutions.

2.4 Solutions of Kiermaier, Okawa, and Soler

The solutions considered so far are universal, so its hard to see the relationship be-

tween X∞ and boundary condition changing operators. So let’s consider the class of

non-universal solutions introduced by Kiermaier, Okawa, and Soler[13] (the KOS solu-

tions):

Φ1 = −(c∂σ01)
1

1 + K
σ10(1 + K)Bc

1

1 + K
(2.24)

This solution describes an open string background BCFT1 with the property that the

boundary condition changing operators σ01 and σ10, shifting between BCFT0 and BCFT1

and back, are dimension zero primaries1 satisfying σ01σ10 = 1. We can construct a left

gauge transformation relating KOS to the simple tachyon vacuum[2]

Ψtv = (c + Q(Bc))
1

1 + K
(2.25)

1I assume σ01 and σ10 are dimension 0 primaries for simplicity. I put the security strip on the right
to make shorter formulas.
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using the formula (1.3):

U1 = 1 + (Φ1 − Ψtv)A

= 1 +

[
−c∂σ01

1

1 + K
σ10(1 + K)Bc

1

1 + K
− (c + cKBc)

1

1 + K

]
B

1 + K

= 1 − cB[K + 1, σ01]
1

1 + K
σ10

1

1 + K
− cB

1

1 + K

= 1 − cB(1 + K)σ01
1

1 + K
σ10

1

1 + K
(2.26)

This gives

X1 = cB(1 + K)σ01
1

1 + K
σ10

1

1 + K
(2.27)

and the projector

X∞
1 = cB(1 + K)σ01Ω

∞σ10
1

1 + K
(2.28)

On the other hand, we can transform from the tachyon vacuum to a KOS solution de-

scribing a different boundary conformal field theory BCFT2:

U2 = 1 + A(Φ2 − Ψtv)

= 1 +
B

1 + K

[
−c∂σ02

1

1 + K
σ20(1 + K)Bc

1

1 + K
− (c + cKBc)

1

1 + K

]

= 1 − 1

K + 1
[K + 1, σ02]

1

1 + K
σ20(1 + K)Bc

1

1 + K
− Bc

1

1 + K

= 1 − σ02
1

1 + K
σ20(1 + K)Bc

1

1 + K
(2.29)

This gives

X2 = σ02
1

1 + K
σ20(1 + K)Bc

1

1 + K
(2.30)

and the projector

X∞
2 = σ02Ω

∞σ20(1 + K)Bc
1

1 + K
(2.31)

To really see a shift in boundary condition we should construct a left gauge transfor-

mation from Φ1 to Φ2:

U12 = U1U2 = 1 −
[
cB(1 + K)σ01

1

1 + K
σ10 + σ02

1

1 + K
σ20(1 + K)Bc

]
1

1 + K
(2.32)

Without calculating anything, we can already anticipate what the projector X∞
12 should

look like: U12 has a left kernel corresponding to X∞
2 and a right kernel corresponding to

X∞
1 , so we should expect

X∞
12 ∼ X∞

2 X∞
1 (2.33)

12



We already see the change in boundary condition between BCFT2 and BCFT1 at the

midpoint. What actually happens is a little more complex, but is essentially captured by

this expectation. To calculate X∞
12 I found it convenient to use the formula

X∞
12 = lim

ε→0

ε

1 − (1 − ε)X12
(2.34)

Plug in,

lim
ε→0

ε

1 − (1 − ε)
[
cB(1 + K)σ01

1
1+K

σ10 + σ02
1

1+K
σ20(1 + K)Bc

]
1

1+K

= lim
ε→0

ε ·
(

1

1 − (1 − ε)σ02
1

1+K
σ20(1 + K)Bc 1

1+K

)(
1

1 − (1 − ε)cB(1 + K)σ01
1

1+K
σ10

1
1+K

)

= lim
ε→0

ε ·
(

1 + σ02
1 − ε

K + ε
σ20(1 + K)Bc

1

1 + K

)(
1 + cB(1 + K)σ01

1 − ε

K + ε
σ10

1

1 + K

)

= lim
ε→0

[(
σ02

ε

K + ε
σ20

)
(1 + K)Bc

1

1 + K
+ cB(1 + K)

(
σ01

ε

K + ε
σ10

)
1

1 + K

+ ε

(
σ02

1

K + ε
Bσ21∂c

1

K + ε
σ10

)
1

1 + K

]
(2.35)

In the last step I multiplied out the terms and dropped factors of 1 − ε which I don’t

think effect the limit; I also assumed that we could write σ20σ01 = σ21, where σ21 is the

boundary condition changing operator between BCFT2 and BCFT1. This assumption is

not true if σ10 and σ02 have singular OPE; I’m not sure yet how this difficulty should

be interpreted or resolved. I’m also, for the moment, reserving judgment about how

the limit ε → 0 should be interpreted, especially for the third term. However, some

things are already clear: The first and second terms are the projectors X∞
2 and X∞

1

describing boundary condition changing operators between BCFT2 and BCFT1 and the

tachyon vacuum; from the worldsheet perspective, these terms should be interpreted as

zero. The third term, however, clearly can be interpreted as the boundary condition

changing operator shifting between BCFT2 and BCFT1. One sanity check is to set all of

the boundary condition changing operators above equal to unity, which should describe

the left gauge transformation from the perturbative vacuum to itself. The limit ε → 0

above can then be computed exactly, and we find the sliver state.
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