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1 Introduction

The idea I want to pursue is to associate a given worldsheet boundary RG flow interpo-

lating from a reference BCFT0 to a target BCFT ∗, with a classical solution of OSFT

describing its IR fixed point, BCFT ∗.

A world-sheet boundary RG flow can be generated by deforming the original worldsheet

action with the integration of a boundary relevant operator, which breaks conformal in-

variance and thus triggers the theory to a new conformal fixed point.

S(u) = S
(BCFT0)
Disk +

∫
∂Disk

dsφu(s), (1.1)

where u is an implicit definition of the boundary coupling/RG scale.

Here we concentrate on the simplest possible situation, when the boundary interaction is

finite without the need of renormalization of contact term divergences.

We stick to boundary interactions (condition 1) such that

e−
∫ b
a φ(s)ds (1.2)

is finite by itself. In conformal perturbation theory, this is an assumption about the

finiteness of the integrated n-point functions of φ(s), along the boundary segment (a, b)(∫ b

a

)n
ds1....dsn 〈φ(s1)...φ(sn)〉Ct . (1.3)

This typically happens when the collisions between the φ’s is less divergent than a simple

pole so that the integration will pass through without producing infinities.

Another condition (condition 2) is the BRST variation of φ

Qφ = ∂(cφ)− φ′∂c. (1.4)

The new generated operator φ′ can be understood as the deviation of φ to be a marginal

operator, and thus the deviation of producing a conformal boundary interaction. In the

X-BCFT describing a flat target space, this is realized by any ‘tachyon profile’ of the

form

φ =: f(X) : . (1.5)

The physical content of the solution is encoded in the RG-condition (condition 3):

φ triggers an RG flow from the reference conformal field theory, BCFT0, to a target
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boundary conformal field theory, BCFT∗. For string field theory purposes, this means

that a φ boundary interaction in correlation functions on a very large cylinder imposes

BCFT∗ boundary conditions, while on a very small cylinder it imposes BCFT0 boundary

conditions. Explicitly,

lim
L→∞

〈
exp

[
−
∫ L

0

ds φ(s)

]
L ◦ O

〉BCFT0

CL

= lim
L→∞

〈
L ◦ O

〉BCFT∗

CL
,

and

lim
L→0

〈
exp

[
−
∫ L

0

ds φ(s)

]
L ◦ O

〉BCFT0

CL

= lim
L→0

〈
L ◦ O

〉BCFT0

CL
. (1.6)

where 〈·〉BCFT
CL

is a correlator on a cylinder of circumference L in the corresponding BCFT,

and L◦O is a scale transformation of an arbitrary bulk operator O under z → Lz. Scaling

(1.6) to a canonical cylinder of circumference 1, these conditions can be equivalently

stated:

lim
u→∞

〈
exp

[
−
∫ 1

0

ds φu(s)

]
O
〉BCFT0

C1

=
〈
O
〉BCFT∗

C1
,

and

lim
u→0

〈
exp

[
−
∫ 1

0

ds φu(s)

]
O
〉BCFT0

C1

=
〈
O
〉BCFT0

C1
, (1.7)

where we introduce the operator

φu(s) = u(u−1 ◦ φ(us)). (1.8)

This gives

φ′u = u∂uφu. (1.9)

Once a φ satisfying the above condition is given, also the corresponding φu will satisfy

the same conditions, and this gives a one parameter family of gauge equivalent choices,

related by the midpoint preserving reparametrization generated by L− = 1/2(L0 − L∗0).

The parameter u (equivalently L) can be interpreted as the RG coupling (or time). In

general, φ(s) will be a sum of different matter operators. To trigger a flow to BCFT∗ as

described in (1.6), the coupling constants multiplying each component matter operator

must be precisely chosen.

To appreciate this point it is worth noticing that after φ is tuned to satisfy condition

3, any slight modification of it can drastically change the nature of the IR fixed point.
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The simplest example of such phenomenon (which will also turn out very useful in the

computation of OSFT observables) is given by replacing a tuned φ with φ + ε. Then,

for ε > 0, condition 3 immediately implies that all IR quantities will be exponentially

suppressed by limL→∞ exp[−εL] = 0. In other words, if φ brings to BCFT ∗, φ+ ε brings

to a BCFT with an exponentially suppressed boundary state: the tachyon vacuum. For

ε < 0 we encounter exponentially divergent IR correlators, which we are not able to give

a sensible meaning.

At least two such exact RG-flows are known. The first is the cosine deformation given

by

φu(s) = u

[
− 1

u1/R2 : cos

(
X(s)

R

)
: +A(R)

]
, , (1.10)

with A(R) determined in 1009.4158. This describes the condensation of a brane wrapping

a circle of radius R (UV fixed point) to a codimension 1 brane living at the minimum of

the φu profile, that is x = πR. In order to generate a finite boundary interaction it must

be that the weight of φ is not too close to 1 (which is where the deformation becomes

exactly marginal). In particular we must have R >
√

2.

A second example is the Witten deformation, which describes a codimension one brane

along a noncompact direction:

φu(s) = u

[
1

2
: X(s)2 : +γ − 1 + ln(2πu)

]
. (1.11)

where γ is the Euler constant. Unlike the cosine deformation, the Witten deformation

leads to a Gaussian worldsheet theory, and Green’s functions can be computed exactly.

While it is useful to have these two explicit examples of φ in mind, all OSFT gauge

invariants only depend on the universal behaviour of the φ–boundary interaction near

the IR fixed point, postulated in the third condition.

1.1 Deformed wedge states

One simple way to include the φ boundary interaction in a SFT setting is to enlarge the

well-known K,B, c algebra with the identity based insertion

φ = φ(1/2)I, (1.12)

φ′ = φ′(1/2)I, (1.13)
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where I is the identity string field and local insertions are defined directly on the cylinder

coordinate frame.

From conditions 1 and 2 we get the algebraic and differential star algebra relations

(cφ)2 = (cφ)(cφ′) = (cφ′)(cφ′) = 0 (1.14)

Q(cφ) = φ′c∂c. (1.15)

Just as a strip of world-sheet of width L corresponds to the string-field e−LK (a wedge

state), the same strip with a boundary deformation given by e−
∫
φ (a deformed wedge

state) corresponds to

Ω̃L = e−L(K+φ). (1.16)

An important quantity is given by the trace of a deformed wedge state (with an understood

ghost insertion to saturate the central charge and the ghost number)

g(L) = Tr[Ω̃L] =
〈
e−

∫ L
0 dsφ(s)

〉
CL
. (1.17)

This quantity (the semi-infinite cylinder partition function) is just the famous ‘g-function’

of Affleck and Ludwig and its logarithm is the so-called boundary entropy. Condition 3

states that we have

lim
L→∞

g(L) = Tr[Ω̃∞] = 〈0|0〉BCFT ∗
, (IR) (1.18)

lim
L→0

g(L) = Tr[1] = 〈0|0〉BCFT0 , (UV ). (1.19)

In other words the deformed sliver Ω̃∞ is associated to the IR fixed point (BCFT ∗), while

the identity string field I = Ω̃0 = Ω0 is associated with the UV (BCFT0).

The g-theorem/conjecture states that g(L) is a positive decreasing function of L. This

essentially states that the system looses (space-time) energy by going from the UV to

the IR. In appropriate units the vacuum energy of BCFT0 is given by 1
2π2 g(0), and the

vacuum energy of BCFT ∗ is given by 1
2π2 g(∞).

We point out the following important property

Tr[Ω̃Lφ′] = Tr[Ω̃L(K + φ)] = − d

dL
g(L). (1.20)

Notice that, because g(∞) is finite

lim
L→∞

LTr[Ω̃Lφ′] = − lim
L→∞

L
d

dL
g(L) = 0. (1.21)

The one-point function of φ′ on a very large (deformed) cylinder goes to zero faster than

the inverse lenght of the cylinder. These are the only (universal) informations which are

needed to reproduce the correct gauge–invariant observables.
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2 The solution and its problem

The solution which was proposed one year ago by myself and Bonora and Tolla in

1009.4158 (BMT from now on) is given by

Φ = cφ− B

K + φ
φ′c∂c = cφ−B

∫ ∞
0

dt Ω̃tφ′c∂c. (2.1)

Leaving for later the check of the equation of motion, let’s instead concentrate on the

simplest gauge invariant observable which can be computed, namely the Ellwood invariant

(or the closed string overlap). In 1009.4158 it was shown that

Tr[VΦ] = −A0(V) +A∗(V), (2.2)

where A0(V) is the disk amplitude in BCFT0 with one on-shell closed string insertion

V = cc̃Vm, A∗(V) is the same quantity in BCFT∗, and Tr[V·] is the 1-string vertex with a

midpoint insertion of V . The very reason behind this result has to be traced back to the

following simple trace in the matter sector

Tr[
1

K + φ
φ′] =

∫ ∞
0

dLTr[Ω̃Lφ′] =

∫ ∞
0

dLTr[Ω̃L(K + φ)]

= −
∫ ∞

0

dL
d

dL
g(L) = g(∞)− g(0), (2.3)

where (1.20) has been used.

Thus the main building block of the solution, namely 1
K+φ

φ′, is correctly producing the

desired shift from the UV to the IR.

However, looking carefully, we realize that this shift is happening because the Schwinger

representation of the formal string field 1
K+φ

is failing in inverting (K + φ)∫ ∞
0

dL Ω̃L(K + φ) =

∫ ∞
0

dL e−L(K+φ)(K + φ) = −
∫ ∞

0

dL
d

dL
Ω̃L = 1− Ω̃∞. (2.4)

This brings problems with the equation of motion.

3 Equation of motion

To clearly see what is the intrinsic problem with the equation of motion it is convenient

to realize that the BMT solution has the generic structure

Φ = cφ− Aφ′c∂c, (3.1)
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where A is some ghost number -1 string field. Let’s see how a string field of this form can

satisfy the equation of motion. Compute

QΦ = (1−QA)φ′c∂c, (3.2)

and (using (cφ′)(cφ) = (cφ)(cφ) = 0)

Φ2 = −ΦAφ′c∂c = −[Φ, A]φ′c∂c. (3.3)

Notice that we took the freedom of adding zero in the form ((φ′c∂c)2 = 0)

0 = AΦφ′c∂c.

Putting everything together we find

QΦ + Φ2 = (1−QΦA)φ′c∂c, (3.4)

where QΦ = Q+adΦ is the shifted kinetic operator around the string field Φ. One obvious

way to solve the equation of motion is asking for φ′ = 0 (that is φ is a marginal operator),

but this just gives an identity based solution for a (regular) marginal deformation. So

that’s not what we are searching for. The other way is to impose

QΦA = 1. (3.5)

But if this is realized then A is an homotopy operator and Φ is the tachyon vacuum (i.e.

the IR fixed point is trivial).

Plugging the BMT definition

A = B

∫ ∞
0

dt Ω̃t

we find instead

QΦA = 1− Ω̃∞. (3.6)

So the cohomology of Φ is not trivialized (in exactly the same way as the cohomology of

Q is not trivialized by B/K) and, at the same time, the equation of motion is violated.

QΦ + Φ2 = Ω̃∞φ′c∂c ≡ Γ 6= 0. (3.7)

There is another interesting way of appreciating the problem with the equation of

motion. To this end we write the BMT solution as

Φ = cφ+BPφc, (3.8)
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and try to determine the ghost number 1 string field Pφ by solving the equation of motion.

It is easy to realize that the equation of motion boils down to the following linear equation

for Pφ

(K + φ)Pφ = φ′∂c. (3.9)

This innocent looking equation is where all the troubles come in. The left hand side has

indeed a left kernel given by the deformed sliver2

Ω̃∞(K + φ)Pφ = 0, (3.10)

Thus the above linear equation is subject to the obvious integrability condition (see also

the talk by Ted Erler for a more general discussion)

Ω̃∞φ′∂c =? = 0, (3.11)

which, as we will see in a moment, is not true in the Fock space. Again, it is important

to see that the Schwinger representation

Pφ =

∫ ∞
0

dt Ω̃tφ′∂c

is indeed realizing

(K + φ)Pφ = (1− Ω̃∞)φ′∂c. (3.12)

And again we find

QΦ + Φ2 = Ω̃∞φ′c∂c. (3.13)

Notice that the finiteness of the deformed sliver Ω̃∞ is behaving as a topological obstruc-

tion which, on the one hand, prevents from flowing to the tachyon vacuum and, on the

other hand, prevents from solving the equation of motion.

It is important to realize that this is precisely the point where all other known regular

solutions don’t fail. An instructive example is given by the well known string field

P =
K

1− Ω

2assuming Pφ is not plagued by associativity anomalies in the star product
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entering the Schnabl solution. This string field can be defined as the solution to the linear

equation

(1− Ω)P = K (3.14)

Again, since the lhs is left–killed by the sliver (Ω∞ − Ω∞+1 = 0), we get the integrability

condition Ω∞K = 0, which is luckily satisfied in a strong enough sense. In particular the

above equation can be solved order by order in powers of K, which gives the L0 expansion

of the Schnabl solution. Similar non trivial integrability conditions are satisfied by all

known regular solutions which can be written inside a minimal extension of the universal

K,B, c algebra.

A quick inspection into

Γ = Ω̃∞φ′c∂c

shows that it is not vanishing because φ′ sits at the edge of the sliver, where it can have

contractions with nearby operators. As shown in 1105.6057 this gives finite overlaps with

Fock-space states and, more seriously, finite overlap with the solution itself, raising serious

doubts about the possibility of reproducing the correct value for the action.

4 Regularization

To continue with explicit computations it is convenient (but not compulsory3 ) to regu-

larize the divergent Schwinger integral ∫ ∞
0

dt Ω̃t.

The obvious way to do so is to introduce a damping factor (for example an hard cut-off

in the IR region). There is however a better choice, which is taylor-made to the simple

form of the solution.∫ ∞
0

dt Ω̃t = lim
ε→0

∫ ∞
0

dt e−εtΩ̃t = lim
ε→0

1

K + φ+ ε
. (4.1)

3This nice feature is a consequence of the fact that, at least in the explicit case of the Witten defor-
mation, Tr[Φ3] is given by an absolutely convergent integral in the 3 Schwinger parameters, which makes
the value of the integral independent of the way the three cutoffs are removed. Due to universal behavior
near the IR we expect this to continue to hold for the cosine deformation as well.

8



This, like any other way of representing 1/(K + φ) as a limit of states in the deformed

wedge algebra, gives a geometric definition of Φ, through the regularized state

Φ(ε) = cφ− B

K + φ+ ε
φ′c∂c, (4.2)

Φ = lim
ε→0+

Φ(ε). (4.3)

This regularization allows to represent the BMT solution as the sum of a tachyon vacuum

contribution plus a ‘phantom’ term in the following way

Φ(ε) = Ψtv(ε) + ∆(ε) (4.4)

Ψtv(ε) = c(φ+ ε)− B

K + φ+ ε
(φ′ + ε)c∂c (4.5)

∆(ε) = −εc+B
ε

K + φ+ ε
c∂c. (4.6)

Going back to the assumptions about the RG flow, we notice that Ψtv(ε) is just the BMT

solution with φ→ φ+ ε, and we already observed that this RG flow ends in the tachyon

vacuum, because of the exponential suppression of the boundary state. This is indeed

captured in the OSFT language by the existence of the regular homotopy field B
K+φ+ε

which genuinely trivialize the cohomology of Ψtv(ε)

(Q+ adΨtv(ε))
B

K + φ+ ε
= 1, ∀ε > 0. (4.7)

The phantom term ∆(ε) is naively vanishing in the ε→ 0 limit, however we notice that

lim
ε→0

ε

K + φ+ ε
= Ω̃∞, (4.8)

so the ‘un-regulated’ phantom term is really

∆ = BΩ̃∞c∂c, (4.9)

and will thus contribute to observables.

Computing the equation of motion we find the same result as before

lim
ε→0

(QΦ(ε) + Φ(ε)2) = lim
ε→0

ε

K + φ+ ε
φ′c∂c = lim

ε→0
Γ(ε) = Ω∞φ′c∂c = Γ. (4.10)

As a last remark, we notice the non trivial relation

∆(ε)Φ(ε) = Γ(ε), (4.11)

which expresses the anomaly in the equation of motion as the product of the phantom with

the solution itself. We are not aware of any regularization or definition of the solution

which solves the equation of motion in a strong enough sense and doesn’t change the

physics in the IR.
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5 Energy

Since the equation of motion are violated, we compute the energy by evaluating the full

gauge invariant action. This gives a surprise. Taking into account the anomaly in the

equation of motion and using the decomposition (4.4) and the nontrivial relation (4.11)

we get

E[Φ(ε)] = Tr

[
1

2
Φ(ε)QΦ(ε) +

1

3
Φ(ε3)

]
= Tr

[
1

6
Ψtv(ε)3

]
+ Tr

[
1

6
∆(ε)3 +

1

2
Γ(ε)Φ(ε)− 1

2
∆(ε)Γ(ε)− 1

2
Φ(ε)Γ(ε)

]
= Tr

[
1

6
Ψtv(ε)3

]
+ Tr

[
1

6
∆(ε)3 − 1

2
∆(ε)Γ(ε)

]
. (5.1)

The anomaly contracted with the solution is not vanishing. For the Witten deformation

we explicitly computed it

lim
ε→0

Tr[Φ(ε)Γ(ε)] = −g(∞)

π2
w, (5.2)

where w is the value of the integral

w =

∫ ∞
0

dx x(cos(x) ci(x) + sin(x)si(x))2 ' 0.36685. (5.3)

However, notice that in(5.1) the terms with the anomaly contracted with the solution

cancel between the kinetic and cubic term of the action. The anomaly is still present,

but only contracted with the phantom term (which doesn’t contain insertions of φ′). The

sliver like structure of this correlator will thus give a contribution proportional to the 1

point function of φ′ on a very large cylinder which, as a consequence of the g–theorem

vanishes. Explicitly (taking into account the ghost correlator which contributes a linear

divergence) we find the BSFT–looking result

Tr

[
1

2
∆(ε)Γ(ε)

]
=

1

2π2
lim
L→∞

L
d

dL
g(L) = 0. (5.4)

This is the ’physical’ way the anomaly effectively vanishes inside the gauge invariant

action.

The remaining term Tr[∆3] (modulo ghost factors) is the trace of the deformed sliver

state, with no insertion of φ′. Thus the matter part will contribute g(∞). Explicitly, in

the ε→ 0 limit we find

lim
ε→0

(E[Φ(ε)]− E[Ψtv(ε)]) = lim
ε→0

Tr

[
1

6
∆(ε)3

]
=
g(∞)

2π2
, (5.5)
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or equivalently

lim
ε→0

E[Φ(ε)] =
1

2π2
(g(∞)− g(0)), (5.6)

which explicitly reproduces the shift between the vacuum energy of BCFT0 and BCFT ∗.

Notice that, in the ε → 0 limit, ∆(ε) can be alternatively interpreted as the lump

solution around the tachyon vacuum Ψtv(ε). The fact that only Tr[∆Γ] = 0 enters the

gauge invariant action explains why the authors of 1105.5926 found the correct energy by

expanding the solution around Ψtv(ε) and computing just the cubic term in the action.

6 Conclusions

I end up listing some more comments and further directions.

6.1 Cohomology

The way the gauge invariant action works suggests that there is a whole class of sliver

like states (which the phantom term belongs to) against which the anomaly is vanishing.

lim
ε→0

Tr[Γ(ε)Π(ε)] = 0.

Inside this family the shifted BRST operator is nilpotent and defines a cohomology

Q2
Φ(ε) = adQΦ(ε)+Φ(ε)2 = adΓ(ε) → 0.

In fact, as we showed in 1105.6057, there is a systematic way to represent Fock states

of the target BCFT ∗ with projector like representatives in BCFT0. When restricted to

these states the BMT kinetic operator becomes indistinguishable from the BRST operator

of BCFT ∗. In particular we considered fluctuations of the form

Πi(ε) = Ω̃
1
2επi(ε)Ω̃

1
2ε .

These projector like states are chosen to flow to BCFT ∗ Fock states

Π∗i = Ω
1
2
∗ π
∗
i Ω

1
2
∗

in the following sense

lim
ε→0
〈Πi(ε),Πj(ε)〉BCFT0 = 〈Πi,Πj〉BCFT

∗
. (6.1)
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Using these states we were able to rewrite the expanded OSFT action around Φ(ε) as the

action directly formulated in BCFT ∗.

lim
ε→0

S(BCFT0)(Φ(ε) + Π(ε)) =
1

2π2
(g(0)− g(∞)) + S(BCFT ∗)(Π∗). (6.2)

Thus it is possible to find cohomology representatives in a subspace where the anomaly

vanishes. Notice however that generic states will feel the non nilpotency of QΦ and they

will experience a tadpole sourced by the anomaly, since Φ is off-shell from the perspective

of the UV degrees of freedom.

6.2 Better regularizations?

Assuming the existence of the lump solution (which was numerically found in Siegel gauge

by Moeller, Sen and Zwiebach) there is the possibility that the BMT solution lives in a

singular point of a gauge orbit of regular solutions. In this case a correct regularization

should displace the BMT solution from this singular point to a generic point in the orbit.

It would be desirable to develop some new method to systematically build regular solutions

starting from off-shell configurations.

6.3 Relation with Multibranes

It is interesting to notice that the recently proposed multibrane solutions by Murata and

Schnabl (see also Masuda and Okawa) encounter similar problems in merging together the

correct observables with the equation of motion. It would be very interesting to analyze

the similarities (and the differences) between these two class of solutions.

6.4 Relation with bcc operators

It would be also very interesting to understand the relation between the way we go the

the IR (that is through an RG flow) and the description of the same BCFT ∗ through

the use of boundary condition changing operators, as suggested by Kiermaier, Okawa and

Soler and, more recently, by Noumi and Okawa.

THANK YOU.

A special thank goes to Ted Erler for the very stimulating collaboration.
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